
1 

 

 

 

 

Exploring Sentiment Analysis for Spanglish: 

Why Sociolinguistic Context Still Matters for NLP 

 

By 

Nolan Welch 

 

 

 

Senior Honors Thesis 

Department of Romance Studies​

The University of North Carolina at Chapel Hill 

 

April 2025 

 



2 

Abstract 

This thesis explores the role of sociolinguistic context in natural language processing (NLP), 

with a specific focus on sentiment analysis of Spanish-English code-switched language. Despite 

recent advancements in large language models (LLMs), mixed-code text remains a challenge for 

NLP systems, often yielding significantly lower performance compared to monolingual tasks. To 

investigate this gap, I evaluate the performance of both small and large multilingual language 

models on benchmark sentiment analysis tasks using three mixed-code datasets: LinCE, the 

Bangor Miami corpus, and EN-ES-CS (Aguilar et al., 2020; Deuchar, 2010; Vilares et al., 2016). 

I further examine whether structural measures of code-switching (CS) can serve as reliable 

predictors of sentiment. Finally, I conduct a time-series analysis to explore whether emotional 

content tends to lead or lag behind code-switch events. My results show that while the 

utterance-level switching metric (Gambäck & Das, 2016) is statistically associated with 

sentiment class, it has limited predictive value in practice, and augmenting models with this 

feature does not yield meaningful performance gains. Similarly, my results suggest a statistically 

significant leading relationship between emotionality and CS time series, though the effect size is 

small. These findings suggest that syntactic or frequency-based features alone are insufficient for 

modeling sentiment in mixed-code contexts, and that future NLP systems may benefit from 

integrating deeper sociolinguistic insights. 

​ Keywords: code-switching, sentiment analysis, Spanglish, bilingualism, natural language 

processing, sociolinguistics, large language models  
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Framing the Problem: Linguistic Theory and NLP in 2025 

William Labov, widely regarded as a founder of sociolinguistics, once remarked that he 

“[had] resisted the term sociolinguistics for years, since it implies that there can be a successful 

linguistic theory or practice which is not social” (1972, p. xiii). His words underscore a 

long-standing paradigmatic tug of war within the field of linguistics: the divide between 

formalist approaches that isolate language from its context, and socially grounded approaches 

that emphasize the embeddedness of language in culture and identity (Waugh et al., 2023). 

Labov’s empirically grounded, socially attuned framework, once at odds with prevailing 

linguistic paradigms, has since become a dominant and enduring tradition, one that highlights the 

complex relationships between speakers, communities, and their languages (Tagliamonte, 2015). 

This shift toward sociolinguistic inquiry reoriented linguistics from the formal study of abstract 

structures to a more holistic understanding and consideration of language as a lived, variable, and 

contextually rich human behavior. 

Fast forward to 2025, and language is once again a central object of public 

fascination—though this time, not through the lens of traditional linguistics rooted in philology 

and the social sciences. Instead, language has become the domain of natural language processing 

(NLP), a subfield of computer science that has risen to cultural prominence through the 

widespread availability of large language models (LLMs). For many, tools like OpenAI’s 

ChatGPT and Anthropic’s Claude now represent their first real engagement with the science of 

language. Yet while these models are celebrated for their apparent capacity for generalized 

linguistic productivity, they remain statistical approximators at their core, lacking inherent 

capacities for reasoning, cultural interpretation, or sociolinguistic inquiry. 
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​ While the past decade’s progress in NLP has been impressive, it is my view that the 

principles of traditional linguistic inquiry—particularly sociolinguistics—have long been 

undervalued in this space. In particular, the social and cultural conditions under which language 

is produced are often ignored by models that treat language as a neutral sequence of tokens, each 

semantically-equivalent combination (more or less) as valid as the next. This omission is 

especially salient in contexts of code-switching (CS), where language use reflects not only 

grammatical structure but also nuanced cues of identity and social positioning. 

​ I intend to explore one intersection of linguistics and NLP where sociocultural insight 

might matter: the potential for CS patterns to augment computational sentiment analysis. 

Through a series of experiments, I investigate whether structural or temporal features of 

Spanish-English mixed-code utterances (Spanglish) carry detectable sentiment-related 

information, and if so, whether such information can meaningfully inform or improve NLP 

systems. In doing so, I aim to contribute to a broader, critical reevaluation of what it would mean 

to pursue sociolinguistically centered NLP, and why that might be necessary. 

Argument Preview 

This thesis explores multiple syntactic and structural features as predictors of sentiment 

in Spanish-English code-switched language (Spanglish) but finds that such approaches 

consistently fall short. I argue that this failure reflects a broader limitation in current NLP 

practices: the tendency to prioritize surface-level linguistic features while overlooking the 

sociolinguistic context in which language is produced. Through empirical evaluation across three 

lines of inquiry—language model performance, structural metrics of CS, and temporal 

relationships between sentiment and language switching—I demonstrate that syntactic or 

frequency-based features offer limited explanatory or predictive value on their own. These 
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findings point to the need for NLP systems that integrate deeper insights from sociolinguistics, 

particularly when working with non-standard or socially variable language varieties. 

Motivation and Significance 

The recent surge in public and academic interest in LLMs has brought NLP to the 

forefront of conversations about the future of language, communication, and artificial 

intelligence. Yet while these models have achieved remarkable feats in a variety of tasks, they 

continue to struggle with linguistic phenomena that fall outside of standardized, monolingual 

usage. I contend that sociolinguistic context—often overlooked in modern NLP research—is a 

key factor in improving model performance on these complex, real-world language tasks. 

Understanding the limitations of language models in handling mixed-code text is not only a 

technical challenge, but a conceptual one: it invites us to reexamine the assumptions and 

conventions that underpin contemporary language modeling and to reconsider how social context 

informs language in use. 

Research Problem 

Despite advances in multilingual NLP and increasing attention to linguistic diversity, 

current models perform poorly on mixed-code tasks such as sentiment analysis of 

Spanish-English utterances. This underperformance raises important questions about the limits of 

current modeling paradigms, especially when applied to socially embedded, non-standard 

varieties of language like Spanglish. I investigate whether structural or temporal patterns in CS 

can serve as effective signals for sentiment classification, and whether incorporating such 

features into NLP pipelines leads to meaningful performance gains. 
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Research Questions 

In my investigations, I explore three interrelated research questions designed to probe the 

relationship between CS and speaker sentiment: 

●​ RQ1: How do multilingual SLMs and LLMs perform on sentiment analysis tasks 

involving Spanish-English mixed-code text? 

●​ RQ2: Can structural features of CS, such as the number of switch points, language ratio, 

or utterance-level switching metric (ULSM), predict sentiment labels? 

●​ RQ3: Is there a temporal relationship between emotionally salient language and the 

occurrence of CS within an utterance? 

Why Spanglish? 

Spanglish, or Spanish-English CS, presents an especially rich site for inquiry at the 

intersection of sociolinguistics and NLP. As a naturally occurring and widely attested mode of 

communication, it reflects not only grammatical blending but also deep cultural, emotional, and 

contextual meaning-making (Leeman & Fuller, 2021, pp. 296–297; Lipski, 2008). The study of 

Spanglish benefits from access to robust datasets across modalities, including transcribed speech 

(e.g., the Bangor Miami corpus) and social media text (e.g., LinCE and EN-ES-CS). 

Furthermore, Spanglish exemplifies many of the sociolinguistic challenges faced by current NLP 

systems (to be discussed later), making it an ideal test case for exploring the limitations of 

conventional modeling approaches and the potential of sociolinguistically-informed alternatives. 

Language Modeling in Context 

What Is Language Modeling? 

​ At its core, language modeling is a statistical task: it involves building a model that 

assigns probabilities to sequences of linguistic tokens (words, characters, subwords, and so on) 
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based on patterns observed in training data. For any given input, the model attempts to estimate 

the most likely continuation or classification, effectively learning a probability distribution over 

sequences in a particular language or language variety. It may be helpful to consider Grieve et 

al.’s (2024) conceptualization of language models: not as universal models of “language”, but 

rather as approximators of the specific linguistic patterns present in their training data. 

​ Though the notion of assigning probabilities to sentences was famously dismissed by 

Noam Chomsky, who argued that such statistical approaches fail to capture grammaticality or 

deep linguistic structure (1968), probabilistic models have nevertheless proven incredibly useful 

in modeling linguistic productivity. Unlike symbolic systems, which rely on rigid sets of rules, 

statistical language models can generalize from data in flexible and often surprising ways. 

With that being said, it is important to acknowledge that every modeling paradigm is a 

choice, and all models are simplifications. NLP has largely committed to a paradigm that treats 

language as a sequence of tokens governed by syntactic and semantic regularities, often to the 

exclusion of social, cultural, and pragmatic context—arguably among the most important factors 

of everyday language use. I choose to interrogate that paradigm by asking: what happens when 

the sociolinguistic realities of language use, such as those involved in CS, are left out of the 

modeling process? 

Small or Large? 

In the current research climate surrounding NLP, I would be remiss not to mention the 

most dominant trend in language modeling: large language models (LLMs). Characterized by 

their massive parameter counts (ranging from 1 billion to over 200 billion, depending on 

architecture and implementation), these models demonstrate emergent capacity for long-form 

text generation, factual recall, and even basic forms of reasoning and pragmatic inference (Li et 
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al., 2024). Some studies also point to their apparent capacity to simulate register variation and 

adapt stylistically to different social personas, raising questions about the extent to which these 

models encode or reproduce sociolinguistic phenomena (Deshpande et al., 2023; Huang et al., 

2024; Tseng et al., 2024; Yang et al., 2024). 

Wang et al. (2024) note that the definition of a “large” language model is far from 

standardized, with criteria including emergent behavior, domain-specific competencies, and 

simple parameter count. For clarity, we will refer to models with 1 billion parameters or fewer as 

small language models (SLMs), and all others as LLMs. 

Despite their dominance, LLMs are not unambiguously superior across all NLP tasks. In 

sentiment analysis, for instance, Zhang et al. (2023) find that LLMs outperform SLMs, though 

only marginally, suggesting that traditional feature engineering and smaller, targeted models may 

still offer strong performance in this domain. This is particularly relevant when modeling 

phenomena like CS, where sociolinguistic nuance may not be adequately captured by massive 

general-purpose language models alone. 

As such, this paper positions itself within a growing body of work that revisits traditional 

linguistic theory, especially sociolinguistics, as a source of insight for designing and evaluating 

language models. Even as LLMs continue to grow in scale and influence, there remains 

significant value in asking what kinds of language patterns are still under-modeled, and how we 

might better capture them—perhaps not through scale, but through sociolinguistic awareness. 
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Background and Related Work 

Contemporary Sentiment Analysis 

What is Sentiment Analysis? 

Sentiment analysis is a core NLP task that consists of determining a base emotional state 

(e.g., positive, negative, or neutral) given a text document (Jiawa et al., 2021; Jin et al., 2023; 

Wankhade et al., 2022). This task has wide applications, from corporate market research to social 

attitude examination; furthermore, it is a basic component of automated systems for parsing and 

generating meaningful representations of human-generated language. 

How It’s Typically Modeled 

​ Zhang et al. (2023) highlight three broad categories of sentiment analysis tasks: sentiment 

classification (SC), aspect-based sentiment analysis (ABSA), and multifaceted analysis of 

subjective texts (MAST). We will primarily discuss the former. 

​ In sentiment classification, sentiment analysis is modeled as a sequence labelling task. 

Given a sentence (or, equivalently, a string of tokens or sub-words), a model predicts the 

appropriate sentiment label. This label might be binary (positive or negative), ternary (positive, 

negative, or neutral), or follow a more fine-grained scale (e.g., positivity rating from 1 to 5). 

Sentiment classification may be applied at different levels of granularity. At the document 

level, models assess the overall sentiment of an entire text. At the sentence level, they evaluate 

the emotional tone of individual sentences. Finally, aspect-based sentiment analysis focuses on 

identifying sentiment toward specific components or features mentioned in the text (e.g., an 

online review for a product might have different sentiments towards its color and build quality). 

Modern sentiment analysis models often rely on transformer-based architectures 

pre-trained on large corpora and fine-tuned for the sentiment classification task (Jin et al., 2023; 
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Vaswani et al., 2023; Wankhade et al., 2022; Zhang et al., 2023). While these models achieve 

state-of-the-art results on monolingual datasets, their performance tends to suffer in mixed-code 

contexts, where syntactic irregularities and sociocultural nuance play a more central role. 

Mixed-Code Language and NLP 

Given the global prevalence of multilingualism, it is unsurprising that NLP tasks have 

been applied to mixed-code data in an effort to improve computational models of this widespread 

mode of communication (Chatterjere et al., 2020). Specialized models that account for the 

peculiarities of CS have been developed for natural language generation, natural language 

understanding, sentiment analysis, and other NLP tasks (Aryal et al., 2022; Doğruöz et al., 2021; 

Nazir et al., 2025; Srinivasan & Subalalitha, 2023; Winata et al., 2023). 

Despite significant advancements in NLP and extremely high accuracy (often exceeding 

90 percent) in monolingual sentiment analysis tasks (IMDb Benchmark (Sentiment Analysis), 

2025), sentiment analysis for mixed-code contexts remains a persistent challenge; the 

best-performing models for mixed-code tasks typically only reach between 58 and 62 percent 

classification accuracy (LinCE Leaderboard, 2025). I investigate the causes of this disparity in 

performance and explore whether it arises from a lack of training data for underresourced 

languages or reflects deeper limitations in current modeling approaches. In other words: can 

mixed-code language modeling be improved using the same strategies that work for monolingual 

data, or do we need to develop fundamentally novel methods for this class of linguistic behavior? 

In NLP, improving model performance on underresourced languages typically involves 

supplementing training data in the target language (Gibadullin et al., 2019; Hedderich et al., 

2021; Mabokela et al., 2023; Ranathunga et al., 2021). For sentiment analysis, Zeng (2024) 

shows that supplying synthetic code-switched data generated by LLMs improves classification 
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accuracy, offering a promising direction for model augmentation. Additionally, Volkova et al. 

(2013) demonstrate the limited but present predictive power of gender-based differences in the 

production of mixed-code writing for sentiment classification. 

Despite the availability of numerous Twitter datasets for NLP and sentiment analysis, 

including several with mixed-code Spanish-English utterances (Aguilar et al., 2020; Mathur & 

Shrivastava, 2024; Pérez et al., 2022, 2024; Sutar et al., 2023; Vilares et al., 2015, 2016), I argue 

that relying solely on text-based data to model native speaker CS is insufficient. CS, as a 

sociolinguistic phenomenon, is best understood as arising from spontaneous, real-time 

interactions between speakers using two or more languages in conversation (Cedden et al., 2024; 

Gardner-Chloros, 2009). The key term here is spontaneous: the moment-to-moment decisions 

that multilingual speakers make in live discourse give rise to CS’s variability and distinct 

character. Unlike monolingual modes of communication, which follow relatively stable 

grammatical conventions, CS lacks rigid structure by its very nature. 

Because spontaneous CS is primarily an oral phenomenon, I posit that written 

communication, which tends to be a relatively more planned form of discourse under Ochs’ 

(1979) dichotomy, fails to capture the core features of CS, and is therefore less representative of 

the linguistic behaviors I aim to study. For this reason, my work focuses on spoken mixed-code 

conversations, particularly from the Bangor Miami corpus, which includes 56 manually 

annotated recordings with detailed language identification (Deuchar, 2010). By analyzing 

sentiment in transcripts of spoken language rather than social media posts, I aim to give a fuller 

account of the spontaneous nature of CS and its relationship with speaker emotion. 
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Code-Switching and Emotion 

The relationship between CS and the emotional speaker state has been previously 

explored from various theoretical and experimental frames of analysis. Dewaele (2010) finds an 

inverse correlation between the recency with which a language was learned (e.g., L2 is acquired 

later than L1) and the likelihood that it will be used to express emotion. In other words, the 

earlier a language is learned, the more likely it is to be used for emotionally expressive content. 

This observation has implications for sentiment analysis in mixed-code contexts, suggesting that 

incorporating information about a speaker’s native or dominant language could improve 

classification accuracy. 

Additionally, Pavlenko (2008) highlights the importance of emotionality and 

emotion-laden vocabulary in multilingual CS. She argues that the type and strength of emotional 

state may influence not only language choice, but also the timing and function of CS events. 

These insights play a central role in shaping multilingual discourse, and thus should be 

considered in computational models seeking to interpret sentiment in code-switched language. 

Sentiment Analysis in Mixed-Code Contexts 

Prior work (Hovy, 2015; Volkova et al., 2013) supports the idea that performance across a 

variety of NLP tasks can be improved by conditioning on sociocultural factors. This suggests 

that patterns of language use are influenced to a measurable and informative degree by 

extralinguistic factors, a notion for which the field of sociolinguistics provides strong evidence. 

The key question, then, is why those sociocultural factors are left on the table, so to speak, when 

creating computational models of language. I will discuss this in greater detail later on. 

Although sentiment analysis has benefited from advances in deep learning and the advent 

of LLMs, most approaches still focus heavily on surface-level lexical and syntactic features. In 
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mixed-code contexts, however, language choice itself may be a crucial signal: CS often reflects 

shifts in speaker stance, audience orientation, and emotional salience, as highlighted by Pavlenko 

(2008). Ignoring such signals risks flattening the rich sociolinguistic landscape that informs 

meaning in code-switched bilingual discourse. 

Why Sociocultural Factors Matter 

On a fundamental level, the study of language modeling, and by extension NLP and its 

associated subtasks, cannot be disentangled from the study of language as a sociocultural 

phenomenon. To treat language as a mere set of lexically-constrained contextual probability 

distributions is to discount the rich and varied sociocultural dimensions of language as it is lived 

and performed in human communities. 

Contemporary NLP methods are undeniably impressive in their scalability and in their 

ability to produce language that is often fluent, semantically coherent, and pragmatically 

appropriate. Still, they remain probabilistic models that exhibit only shallow syntactic, semantic, 

and pragmatic awareness. Despite their apparent linguistic fluency, these systems often fail to 

engage with the deeper structures and social functions that define language in use. 

Because LLMs’ output is tightly coupled to the data they are trained on, performance 

disparities across languages are to be expected. Languages that are underrepresented in datasets 

like Common Crawl often see degraded performance on NLP tasks that require advanced 

understanding of phrase structure, cultural pragmatics, and other usage-based phenomena. In 

these cases, the gap between statistical language modeling and lived linguistic experience 

becomes most visible. 

A key question I aim to raise is whether traditional approaches to language modeling are 

reliable when applied to non-standard or minoritized linguistic varieties. For example, 



15 

Spanish-English code-mixed text is widespread online, yet LLMs consistently underperform on 

NLP tasks in mixed-code contexts compared to their performance on monolingual benchmarks. 

Why is this? Is there simply insufficient training data to support broad generalization in these 

contexts? Or might it be that CS taps into dimensions of language—social identity, community 

norms, interspeaker variation—that go beyond syntax and semantics? Perhaps sociocultural 

factors are not external to language modeling, but rather central to it. 

Methodology 

Research Design Overview 

​ To investigate the persistent underperformance of language models on sentiment analysis 

tasks involving mixed-code Spanish-English data, this study adopts a multi-pronged approach 

that combines model benchmarking, feature-based statistical analysis, and time-series 

experimentation. This design reflects the multifaceted nature of the problem: while prior work 

indicates that NLP models struggle with code-switched data, the reasons for this remain 

underexplored (Winata et al., 2023). Rather than assuming a single cause, such as a lack of 

training data, this study treats the issue as potentially arising from multiple linguistic and 

statistical factors. 

Accordingly, I pursue three interrelated lines of inquiry, each designed to probe a distinct 

aspect of the problem: 

1.​ RQ1: How do multilingual small and LLMs perform on mixed-code sentiment analysis 

tasks? This question establishes a performance baseline by evaluating models of varying 

scale across two datasets (LinCE and EN-ES-CS), allowing for direct comparison 

between architectures and prompting strategies. 
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2.​ RQ2: Can utterance-level structural features of CS serve as predictors of sentiment 

class? Here, I explore whether simple syntactic indicators, such as language ratios and 

CS frequency, convey useful sentiment-related information. 

3.​ RQ3: Is there a temporal relationship between emotionally salient language and 

code-switch events within an utterance? Finally, I use time-series cross-correlation 

techniques to test whether emotional content precedes or follows CS, hoping to reveal 

latent discourse-level patterns, if any exist. 

​ Together, these threads offer a holistic, layered view of where current approaches to 

mixed-code sentiment analysis succeed, where they fall short, and what types of information 

might help improve future computational methods. 

Datasets 

​ For the purpose of my analyses, I examine three datasets: the Bangor Miami corpus, the 

LinCE dataset, and the EN-ES-CS dataset. In the sections below, I provide a brief description of 

each dataset, as well as my parsing and preprocessing methods. 

Bangor Miami Corpus 

​ The Bangor Miami corpus (Deuchar, 2010) consists of transcribed oral conversations 

between a study participant, dubbed “María”, and other speakers from Miami, Florida. The 

transcripts have been manually annotated with detailed language identification (LID) features, 

including markers to indicate whether morphological features are mixed from English and 

Spanish. There is also part-of-speech (POS) tagging, as well as translations to English for all 

Spanish sentences. The corpus is publicly available as a part of the BilingBank database (a 

component of TalkBank) and specified according to the CHAT transcription format 

(MacWhinney, 2000, 2019, 2020). 
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​ It is worth noting that a large portion of the code-switched speech in this corpus is 

sourced from a single speaker, and thus may not be representative of broader sociolinguistic 

patterns. However, the corpus’ detailed linguistic annotations and parallel English translations 

make it uniquely useful for exploratory analyses of CS dynamics. 

LinCE Dataset 

​ The LinCE dataset (Aguilar et al., 2020) is a multilingual, multi-task dataset intended to 

serve as an evaluator of language model performance in mixed-code contexts. The dataset 

includes Spanish-English tweets labeled for a range of NLP tasks, including part-of-speech 

tagging, language identification, and sentiment analysis. The data is provided split into a training 

set (12,194 samples), a development set (1,859 samples), and a test set (for evaluation on the 

online LinCE leaderboard), and is specified in CoNLL format. For the purposes of this study, I 

focused exclusively on the sentiment classification subset of the dataset. While less richly 

annotated than the Bangor Miami corpus, LinCE offers a more diverse and representative sample 

of mixed-code language in a written social media context. 

EN-ES-CS Dataset 

​ The EN-ES-CS dataset (Vilares et al., 2016) consists of Spanish-English code-switched 

tweets annotated for sentiment. It includes 3,062 tweets unevenly distributed across three 

sentiment categories: positive (963 samples), negative (786 samples), and neutral (1,313 

samples). Compared to LinCE, the EN-ES-CS dataset is smaller, but provides good variety for 

controlled sentiment classification experiments. I selected this dataset for its relative structural 

simplicity and because it has been used as a benchmark in several prior studies of sentiment 

analysis in mixed-code contexts (Ahuja et al., 2023; Barbieri et al., 2020; Jose et al., 2020; 

Mabokela et al., 2023). 
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Preprocessing Pipeline 

​ For all datasets, I applied a consistent preprocessing pipeline to ensure comparability and 

to prepare the data for analysis and model training. The pipeline includes the following steps: 

1.​ Lowercasing all tokens 

2.​ Removing URLs, hashtags, mentions, and non-ASCII characters 

3.​ Lemmatization using language-specific models from spaCy (Honnibal et al., 2020) 

4.​ Stopword removal (filler words or words with low emotional content) 

5.​ Punctuation scrubbing 

As an example, the unprocessed input string “@_OmarReyes jajajajj me avisas, que lo 

necesito :) :) :) saludos” is normalized and cleaned as “jajajajj avisa necesitar saludos”. 

​ For structural feature extraction, including the number of code-switch points and the 

Utterance-Level Switching Metric (ULSM), I used language identification tags when available 

(e.g., in the Bangor Miami corpus) or heuristic-based labeling based on token-level language 

detection using the Lingua Python library (Stahl, 2021/2025). The preprocessed text and 

associated features were then formatted into comma-separated values (CSV) files for 

downstream model training and evaluation. 

RQ1: Benchmarking Language Model Performance 

​ This experiment evaluates the performance of small and large multilingual language 

models on sentiment analysis tasks in Spanish-English mixed-code contexts. The objective is to 

establish a performance baseline and identify whether scale, fine-tuning, or prompting strategies 

significantly influence classification outcomes in these settings. 

Model Selection 

​ Two categories of models were tested. See Appendix for additional model details. 
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●​ Small Language Models (SLMs): 

○​ LM1 (BERT family, 109M parameters) 

○​ LM2 (DistilBERT family, 135M parameters) 

○​ LM3 (RoBERTa family, 279M parameters) 

●​ Large Language Models (LLMs): 

○​ LM4 (GPT family, estimated 8B parameters) 

○​ LM5 (GPT family, estimated 200B parameters) 

Evaluation Protocol 

For this experiment, I evaluated models on the EN-ES-CS and LinCE datasets, as these 

text-based datasets lend themselves easily to multilingual and code-switching analysis. 

As prior work has shown, language model performance on most mixed-code NLP tasks is 

quite poor, especially when compared to LM performance on the same tasks in monolingual 

contexts (Sitaram et al., 2020; Winata et al., 2023). In order to investigate this phenomenon and 

explore its boundaries—for example, whether larger model sizes correlate with improved task 

accuracy—I evaluated five language models on the LinCE and EN-ES-CS datasets.​  

SLMs were evaluated directly on both datasets using pretrained sentiment classification 

heads. LLMs were evaluated only on the LinCE dataset using three prompting strategies: 

zero-shot prompting, few-shot prompting, and chain-of-thought prompting. Prior work motivates 

the use of these prompting strategies as a means of improving LLM performance; see Schulhoff 

et al. (2025) for a thorough review of current research on prompt engineering. For the full 

prompts used in these LLM experiments, see Appendix. A brief definition of each strategy is 

given below. 

●​ Zero-shot prompting: The LLM is only given the classification task, with no examples. 
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●​ Few-shot prompting: The LLM is given the classification task, plus 3 examples of 

desired classification behavior. 

●​ Chain-of-thought prompting: The LLM is encouraged to provide its classification after 

“thinking out loud” in a step-by-step manner. 

​ Prior work, including Schulhoff et al. (2025), suggests that incorporating information 

regarding the task domain at prompt time can improve LLM performance. To further break down 

the factors involved in language model performance for the mixed-code sentiment classification 

task, I performed each LLM experiment in two settings: 

●​ CS-naive: No explicit information regarding CS was provided to the model during 

prompting. 

●​ CS-aware: In-context learning (ICL) examples included code-switched inputs. 

​ Each LLM was run across three trials per prompting condition. The primary metrics 

reported are accuracy, precision, recall, and F1 score (weighted average). 

RQ2: Structural Code-Switching Features as Predictors of Sentiment 

​ In this portion of the study, I investigated whether simple structural features of code 

switching in an utterance could serve as predictive features for sentiment classification. I focused 

on three utterance-level features in particular: the number of code-switch points, the proportion 

of the sentence that was in English or Spanish, and the utterance-level switching metric (ULSM), 

proposed by Gambäck and Das (2016) (see Appendix). The goal of this experiment was to 

evaluate whether these features alone, without their lexical context, could meaningfully predict 

sentiment labels in mixed-code utterances. 
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Feature Engineering and Augmentation 

​ To begin, I augmented the EN-ES-CS dataset (Vilares et al., 2016) by extracting the 

following structural features on a per-utterance basis: 

●​ Number of code-switch points: The number of times the language changes between 

adjacent words. 

●​ Language ratio: The proportion of words in the sentence that are in English, as a proxy 

for the bilinguality of the utterance. 

●​ Utterance-Level Switching Metric (ULSM): A normalized score that quantifies the 

amount of CS relative to utterance length. ULSM was computed using the majority 

language in the utterance as the matrix language; see Appendix for more. 

These features were calculated using custom scripts that leveraged token-level language 

labels, which were generated heuristically for this dataset using existing tools and dictionaries. 

Preprocessing and Normalization 

Prior to feature extraction, I applied several preprocessing steps to ensure consistency 

across utterances. These included lemmatization, removal of stopwords and punctuation, and 

normalization to lowercase. The resulting cleaned text was then used both to compute structural 

features and to train benchmark classifiers. For numerical features, I standardized values to 

facilitate statistical comparison and modeling. 

Statistical Analysis 

To assess whether any of the three structural features were significantly associated with 

sentiment class, I performed a Kruskal-Wallis H-test, a non-parametric alternative to ANOVA 

suitable for ordinal and non-normally distributed data (1952). Because the sentiment label is a 
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three-level categorical variable (positive, negative, neutral), this test was applied separately for 

each structural feature, with α = 0.05 and two degrees of freedom. 

Post Hoc Testing 

For features that showed a statistically significant result in the Kruskal-Wallis test, I 

conducted a Dunn’s test with Bonferroni correction (1961) to identify which sentiment category 

pairs differed significantly. This enabled finer-grained analysis of whether CS metrics differed 

significantly between specific sentiment classes (e.g., negative vs. neutral). 

Baseline Classifier Using ULSM 

To test the practical utility of the strongest-performing structural feature, ULSM, I trained 

a naive logistic regression classifier to predict sentiment class using ULSM as the sole feature. 

To improve interpretability, I collapsed sentiment into a binary task: classifying utterances as 

either negative or non-negative. Model performance was evaluated using weighted F1 score and 

area under the ROC curve (AUC) (Li, 2024). 

Feature-Enhanced Model Evaluation 

Finally, I tested whether adding ULSM as an additional feature would improve the 

performance of traditional text-based classifiers. Using the same preprocessing pipeline and 

training data, I trained and evaluated five standard machine learning models—dummy classifier 

(most frequent class prediction), decision tree, k-nearest neighbors, naive Bayes, and random 

forest—under two conditions: text-only baseline, and text augmented with the ULSM feature. 

Text features were given as text frequency-inverse document frequency (tf-idf) values calculated 

with the scikit-learn Python module (Pedregosa et al., 2011). This allowed for a controlled 

comparison of model performance with and without CS information. 
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RQ3: Temporal Alignment Between Emotion and Code-Switching 

​ In this final line of inquiry, I conduct a time-series cross-correlation analysis to determine 

whether emotionally salient language (as measured by token-level emotional arousal and 

valence) serves as a leading or lagging indicator of code-switch points within an utterance. This 

experiment aims to probe the discourse-level dynamics of sentiment and language choice. 

​ In my approach, I model a sentence S as a sequence of temporally-ordered word-level 

observations, each of which is associated with some sentimental content and a language. This 

enables the application of time-series based analysis techniques, treating each word as a separate 

time step. For my analysis, I focused on two signals: language switching and speaker sentiment. 

Language Switching Signal 

I defined the language-switching signal as a time series of length n, where n is the 

number of words in the sentence. At each time step t, this signal takes on a value according to a 

binary function CS(t) depending on whether a code-switch (change in language) has occurred 

relative to the word at time step t-1: 

●​ CS(t) = 0 if t = 0 

●​ CS(t) = 0 if Lang(t) = Lang(t-1) 

●​ CS(t) = 1 if Lang(t) ≠ Lang(t-1) 

​ To illustrate this labeling method, several examples of mixed-code sentences from the 

EN-ES-CS corpus (Vilares et al., 2016) and their CS signals are given below. 

Sentence Code-Switching Signal 

My brother was like next time que venga Te 
Lo Presento [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 

Now Eso Si Fue boda del Año [0, 1, 0, 0, 0, 0, 0] 

I wanted to dance Reggeaton Pero no Tenia [0, 0, 0, 0, 1, 0, 0, 0, 1, 0] 
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dancing partner 
 

For the word-level language identification Lang(t), I used the hand-labeled language 

annotations provided in the Bangor Miami corpus. The corpus’ annotations identify multiple 

language types beyond just English and Spanish: there are unique tags for mixed-language 

words, terms of ambiguous linguistic origin, and words from neither English nor Spanish (e.g., 

French words or non-words). For simplicity’s sake, I adopted a naive approach, treating each 

unique tag as a unique language for the purpose of calculating CS points. 

Sentiment Signals 

For this investigation, sentiment signals are a pair of time series of length n, where n is 

the number of words in the sentence. For each word, I used a multilingual RoBERTa model 

fine-tuned for sentiment analysis (LM3; see Appendix) to calculate valence and arousal values, 

drawing on Russell’s (1980) two-dimensional “circumplex” model of emotion. We approximated 

these values using LM3 as follows: 

●​ Valence: Approximated as (Probability of positive class) – (Probability of 

negative class). A higher value means the term is more likely to be positive. 

●​ Arousal: Approximated as the maximum probability between P(positive) and 

P(negative), where “P(X)” means “the probability that sentiment class is X”. A 

higher value means the term is more strongly emotionally biased. 

Results 

RQ1: Model Performance 

Performance of Small Language Models 

​ Experimental results are presented below. Best scores are underlined for each dataset. 
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Model Dataset Accuracy Precision Recall F1 

LM1 EN-ES-CS 0.63 0.65 0.63 0.62 

LinCE 0.46 0.58 0.46 0.46 

LM2 EN-ES-CS 0.43 0.51 0.44 0.37 

LinCE 0.53 0.48 0.53 0.47 

LM3 EN-ES-CS 0.66 0.66 0.66 0.66 

LinCE 0.52 0.58 0.52 0.53 

 

Performance of Large Language Models 

​ The figures provided below are F1 scores averaged across three trials. The top F1 score 

across models, prompting strategies, and awareness settings is underlined. 

Model Prompting method CS-Naive CS-Aware 

LM4 Zero-shot 0.557 0.537 

Few-shot 0.543 0.550 

Chain-of-thought 0.550 0.537 

LM5 Zero-shot 0.453 0.513 

Few-shot 0.447 0.400 

Chain-of-thought 0.510 0.520 

 

RQ2: Structural Features and Sentiment 

Kruskal-Wallis and Dunn’s Post Hoc Results 

Of the three features tested, only the ULSM displayed a statistically significant 

relationship with sentiment category. The Kruskal-Wallis test yielded H = 16.76, p = 0.0002, 

surpassing the critical chi-squared value of 5.99 for α = 0.05 with two degrees of freedom. In 

contrast, the number of code-switch points (H = 1.98, p = 0.372) and the English word ratio (H = 
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0.61, p = 0.737) showed no significant association with sentiment class. (Note that, since we 

only model English and Spanish, we do not need to model English ratio and Spanish ratio 

separately; Ratio(Spanish) = 1 – Ratio(English), so any relationship with one would hold for the 

other.). 

A follow-up Dunn’s test with Bonferroni correction revealed that the difference in ULSM 

was statistically significant for comparisons between negative and neutral sentiment (p = 

0.0002), as well as between negative and positive sentiment (p = 0.004), but not between positive 

and neutral categories. 

Naive Logistic Regression Using ULSM 

To further assess ULSM's practical utility, I trained a simple logistic regression model to 

classify sentiment as negative or non-negative based solely on the ULSM value. The model 

achieved a weighted F1 score of 0.57 and an area under the ROC curve (AUC) of 0.54, 

suggesting that while the metric carries some signal, it is a poor standalone predictor of negative 

vs. non-negative sentiment class. See Appendix for the ROC curve. 

Text + ULSM Model Performance 

Model Baseline F1 Score Augmented F1 Score 

Dummy classifier 0.40 0.40 

Decision tree 0.47 0.45 

K nearest neighbors 0.49 0.49 

Naive Bayes 0.51 0.49 

Random forest 0.46 0.46 

 

The results of this experiment indicated that in all but one case, the inclusion of ULSM 

did not improve model performance, and in some cases slightly reduced it. For instance, the 
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decision tree classifier's F1 score dropped from 0.47 to 0.45 when ULSM was added, and naive 

Bayes dropped from 0.51 to 0.49. These findings indicate that while ULSM may show 

statistically significant differences across sentiment categories, it lacks sufficient predictive 

strength to improve classifier accuracy in practice. 

RQ3: Cross-Correlation Results 

Observed Patterns 

​ In the Bangor Miami dataset, the peak correlation between emotional arousal and CS 

events occurred at a lag of +1, indicating that emotional content tends to precede code-switch 

events by one token. This alignment supports the hypothesis that CS may be responsive to 

emotionally charged content, rather than anticipatory. 

Significance Testing 

​ To evaluate whether these observed correlations were meaningful or the result of random 

noise, I constructed a null distribution by randomly shuffling sentiment values within each 

utterance and recalculating peak correlations for 10,000 such permutations. The empirical 

p-values, based on the proportion of shuffled trials with greater or equal peak correlation, were 

effectively zero for both datasets. Additionally, I calculated z-scores based on the null 

distribution mean and standard deviation. The observed peak correlation was 0.0149, and the null 

distribution’s mean and standard deviation were μ = 0.0015 and σ = 0.00084. This puts the peak 

observation at Z = 15.8, p < 2.4 * 10-55 (assuming that the null distribution is roughly normal). 

These results strongly reject the null hypothesis that the observed alignment between sentiment 

and CS is random. The alignment is small in magnitude, and further experimentation should aim 

to confirm this phenomenon across multiple datasets and modalities (e.g., other datasets and 

text-based datasets). 
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Discussion 

Interpreting RQ1: Benchmarks and Implications 

SLMs Underperform on Mixed-Code Sentiment Tasks 

​ Despite strong performance on monolingual benchmarks such as IMDb or SST-2 (Maas 

et al., 2011; Socher et al., 2013), none of the SLMs achieved F1 scores above 0.66 on 

mixed-code datasets. Notably, even models explicitly trained for multilingual sentiment analysis 

performed only moderately well, particularly on the LinCE dataset. This suggests that CS 

presents structural challenges that are not addressed by standard pretraining strategies. 

LLMs Show Inconsistent Improvements Despite Scale 

The performance of LMs 4 and 5 was mixed. LM4, a smaller model, often outperformed 

the much larger LM5—a surprising result that suggests diminishing returns from scale in 

mixed-code contexts when fine-tuning or domain-specific adaptation is absent. Across all 

prompting modes, the highest F1 score for any LLM was 0.56, which is underwhelming for 

models that often exceed classification accuracies of 0.90 on monolingual tasks (IMDb 

Benchmark (Sentiment Analysis), 2025). 

In-Context Priming With CS-Aware Examples Yields Marginal Gains 

Priming LLMs with code-switched examples (CS-aware setting) produced only minor 

gains in most cases. The only reliably positive shift was observed in the zero-shot setting for 

LM5, where CS-aware priming led to an F1 increase of 0.06. However, in few-shot scenarios, 

CS-aware performance even declined slightly, possibly due to example clutter or increased 

confusion around language boundaries. 
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Prompting Strategy Mattered Less Than Expected 

Chain-of-thought prompting, often beneficial for logical reasoning tasks, did not 

substantially outperform zero-shot or few-shot prompting. In fact, differences between 

prompting styles were minimal across all tested configurations, suggesting that sentiment 

classification on mixed-code data may not benefit from reasoning-based prompting in its current 

form. 

Interpreting RQ2: Code-Switching as a Structural Signal 

ULSM Is Statistically Significant but Weak in Practice 

The ULSM was the only CS feature to show a significant difference across sentiment 

categories. However, the post hoc analysis suggests that this signal is primarily driven by 

contrast between negative sentiment and other classes, with positive vs. neutral remaining 

indistinguishable. 

Poor Performance of Naive Classifier Confirms Weak Predictive Value 

Although statistically significant, the ULSM is not a strong predictor of sentiment in 

practice. An AUROC of 0.54 and an F1 score of 0.57 are marginally better than random chance 

for the binary classification task (negative vs. non-negative). 

Augmenting Text-Based Models With ULSM Does Not Improve Performance 

​ Across all model architectures tested, the inclusion of ULSM as a feature failed to 

improve or even maintain performance relative to the baseline. In some cases (e.g., Decision 

Tree, Naive Bayes), performance slightly decreased. 

Structural Code-Switching Metrics May Lack Theoretical Power 

While it’s encouraging that ULSM captured some signal, the fact that neither switch 

count nor language ratio were predictive suggests that purely syntactic or frequency-based 
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metrics may not encode the emotional nuance present in mixed-code communication. This 

supports the idea that future work should look to sociolinguistic or discourse-level features. 

Interpreting RQ3: Emotion Leading Code-Switching 

Summary of Findings 

​ The results from the cross-correlation analysis support the idea that emotional salience 

precedes CS events. The consistent peak correlation at a +1 word lag in the Bangor Miami 

corpus indicates that emotionally intense words tend to come just before a language switch, 

suggesting a reactive rather than anticipatory function of CS in emotional moments. 

Effect Size and Practical Significance 

​ While the results are statistically significant, the small magnitude of the observed 

correlational effect (r = 0.0149) means they are of limited practical utility. Although these results 

are unlikely to have occurred by chance, this weak correlation suggests limited predictive power 

in real-world applications, especially when relying on simple, token-level sentiment estimations. 

Modeling Implications 

​ These findings contribute to the growing body of evidence that linguistic features like CS 

are influenced by more than grammatical constraints, and also respond to social and emotional 

context. As such, computational models that aim to predict or understand CS behavior may 

benefit from integrating pragmatic and sociocultural cues (such as speaker identity, topic of 

conversation, or setting) alongside lexical and morphosyntactic cues. 

Limitations and Future Directions 

​ This analysis is limited by its reliance on estimated sentiment scores and a limited 

word-level resolution. Future research could explore more robust emotion modeling techniques, 

incorporate discourse-level or prosodic features, and test across a wider range of bilingual 
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datasets to validate the generality of the finding. Additionally, future work could improve on this 

experiment’s naive approximations of valence and arousal by incorporating more advanced 

models that score sentences on their emotional valence and arousal, such as VADER (Hutto & 

Gilbert, 2014) or SentiStrength (Thelwall et al., 2012). 

Methodological Reflection 

With the benefits of hindsight and a deeper understanding of the datasets and modeling 

challenges involved, I would like to reflect on several limitations of my experimental 

methodology and highlight areas where future research could improve upon this work. 

Prioritizing Oral Language Data 

One key insight is that CS, as a language contact phenomenon largely defined by 

spontaneous, context-dependent decision making, is best studied in oral, transcribed 

conversation. Unlike written or semi-planned communication (e.g., social media posts), natural 

speech more reliably captures the real-time cues that influence CS behavior. In this light, an ideal 

experimental setup would have focused more heavily on corpora like the Bangor Miami corpus 

or similar transcribed interviews with native Spanish-English bilinguals. Even more effectively, 

future work might involve designing sociolinguistic interview protocols that intentionally elicit 

emotionally charged speech, thereby improving the validity and accuracy of analyses for 

sentiment analysis tasks. 

Interpreting Small Effect Sizes 

Although this study finds statistically significant evidence of a relationship between CS 

behavior and speaker sentiment, the effect sizes are small and unlikely to support practical 

applications in their current state. Indeed, it is possible that these weak associations are a result 

of noise introduced by coarse-grained measures of sentiment and structural CS. Future work 
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aiming to connect sociolinguistic patterns with computational predictions should seek 

phenomena with stronger empirical precedents and consider higher-resolution emotion modeling 

strategies. 

Limitations in Time-Series Design 

The design of the time-series analysis used to examine temporal correlations between 

sentiment and CS could also be improved. Ideally, sentiment analysis would have been 

performed on monolingual data, such as the English translations found in the Bangor Miami 

corpus. Monolingual inputs tend to produce more accurate and consistent outputs from current 

language models. However, this approach was ultimately infeasible due to alignment issues 

between the English translations and the original mixed-code sentences; since they differ in 

structure and length, the required isomorphic sequences for cross-correlation were not available. 

Alternative alignment techniques or attention-based models may prove helpful in future research. 

Exploring Finer-Grained Sentiment Tasks 

This project focused primarily on utterance-level sentiment classification, a relatively 

coarse task. While appropriate for a first step, future work may benefit from exploring more 

fine-grained sentiment subtasks, such as aspect-based sentiment analysis. These more nuanced 

tasks might reveal patterns missed by global labeling approaches and would be better suited to 

capturing the rich interplay between CS and emotion. 

Toward More Nuanced Experimental Design 

A more refined experimental design, with greater attention to exploratory analysis in the 

early stages and more careful selection of syntactic and structural features of CS, may yield 

deeper insights into the connection between bilingual CS and emotional expression. As 

computational tools become more sophisticated, aligning their outputs with human 
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sociolinguistic intuition will become increasingly essential for advancing NLP in diverse, 

multilingual contexts. 

Reframing the Problem: Sociolinguistic Awareness in NLP 

Language is nothing if not social. As Labov argued, it is both foolhardy and nearly 

impossible to pursue a study of linguistics that is not firmly rooted in an understanding of the 

social context in which it occurs. While contemporary language models are trained on large-scale 

text corpora consisting of (primarily) authentic examples of language in use, the social 

dimension of language is all but lost, hidden behind loose associations with factors unknown to 

the LM. Humans incorporate sociocultural information on a regular basis when parsing and 

producing language, with profound pragmatic implications for how an utterance is interpreted. 

Consider, for instance, the sentence “What’s the problem, mija?” spoken in two different 

contexts: one by a Hispanic bilingual parent in a moment of tenderness, and the other by a 

monolingual outsider in a sarcastic tone. Without sociocultural grounding, a model cannot 

distinguish the affectionate use from the potentially mocking one. This limitation underscores a 

broader point: many of the most meaningful distinctions in language use hinge not on word order 

or token frequency, but on speaker identity, intention, and social relationship. 

Hopefully, the reader is now convinced of the importance, if not the absolute necessity, of 

incorporating sociocultural awareness into computational language models in conjunction with 

their base awareness of token relations and distribution. But this leads to a crucial question: How 

can we build models that account for human-centered context? Clearly, demographic information 

is not always available in NLP tasks, and in fact rarely is; much of the discourse used for NLP 

tasks is captured from semi-anonymous public-facing platforms such as Reddit, IMDb, Amazon, 

and Twitter/X, where traditional demographic signals are sparse, noisy, or absent entirely. 
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A core question arises: Can a more complete model of this extralinguistic and 

sociocultural information be attained by feeding more data into existing language models, or 

must we develop novel approaches that represent these factors as first-class components of 

linguistic meaning? Tackling this challenge may mean breaking with the current paradigm of 

inflated model size in favor of targeted architectures that prioritize sociolinguistic variables. One 

possibility is the integration of metadata-rich corpora, including information such as speaker 

background information or community-oriented language patterns, into training pipelines. 

Another is to adapt NLP evaluation frameworks to measure performance on context-sensitive, 

socially embedded tasks. 

​ Incorporating demographic characteristics such as age, gender identity, regional 

background, and socioeconomic status into linguistic models could significantly improve their 

ability to capture the nuance of language use across social groups. The utility of this approach, as 

I see it, would be twofold: first, it would enhance predictive accuracy in socially complex 

modeling tasks, such as dialect identification, politeness detection, or code-switching prediction. 

Second, it would enable models to represent the full diversity of human language in a faithful 

manner, taking into consideration the social factors that lead to this embodied linguistic practice 

in the first place. In the long term, these developments could lead to a new generation of NLP 

tools that are not only more precise but also more socially aware, improving both theoretical 

models of language and practical applications in multilingual and multicultural contexts. 

Conclusion 

I have explored a specific, illustrative challenge at the intersection of sociolinguistics and 

computational language modeling: the interpretation of sentiment in Spanish-English 

mixed-code language. Through empirical investigations of structural and temporal features in 
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code-switched data, I have shown that while certain linguistic patterns (including ULSM and 

sentiment-CS alignment) may correlate with speaker emotion, their predictive utility remains 

limited. These findings suggest that the shortcomings of current NLP approaches in mixed-code 

contexts stem not merely from insufficient data or model size, but from a more fundamental 

oversight: the neglect of sociocultural nuance. 

As LLMs continue to shape public perceptions of what language technology can and 

cannot do, we must critically assess the assumptions embedded within them. Language is not just 

lexical semantics glued together by a uniform syntax to form meaning—it is also identity, 

emotion, and context. If we hope to build NLP systems that truly understand and serve the 

richness of human communication, we must move beyond token-level correlations and toward 

models that acknowledge language as a socially embedded act. 

This work aims to be a small step toward that broader vision. By drawing from the 

traditions of sociolinguistic inquiry and applying them rigorously to contemporary NLP tasks, 

we can begin to ask deeper, more consequential questions about language, power, and 

representation. Only by bridging these fields can we design technologies that are not merely 

functional, but socially attuned—technologies that better capture the vibrant, complex realities of 

human communication and expression. 
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Appendix 

Language Models 

 SLM / LLM Model details 

LM1 SLM 
pysentimiento/robertuito-sentiment-analysis (García-Vega et al., 
2020; Pérez et al., 2022, 2024) 
109M parameters 

LM2 SLM 
lxyuan/distilbert-base-multilingual-cased-sentiments-student (Laurer 
et al., 2024; Lik Xun Yuan, 2023; Sanh et al., 2020) 
135M parameters 

LM3 SLM 
cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual 
(Camacho-Collados et al., 2022; Cardiff NLP, 2022) 
279M parameters 

LM4 LLM GPT-4o mini (OpenAI, 2024a) 
Estimated 8B parameters 

LM5 LLM GPT-4o (OpenAI, 2024b) 
Estimated 200B parameters  

 

ULSM Equation 

 

Where: 

●​ N is the number of tokens in the utterance that correspond to some language, 

●​ t is the number of tokens in the utterance that correspond to the matrix language, 

●​ P is the number of code alternation points, and 

●​ wm, wp are weights for the matrix and the code alternation points such that wm + wp = 1 

https://huggingface.co/pysentimiento/robertuito-sentiment-analysis
https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student
https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-system-card/
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From Gambäck and Das (2016). For our experiments, I set wm = wp = 0.5, and treated the 

utterance-level majority language as the matrix language. Note that this differs from traditional 

matrix language-based syntactic accounts of code-switching; see Myers-Scotton (1993). 

ULSM Logistic Regression ROC Curve 

 

The ROC (receiver operating characteristic) curve visualizes the predictive capacity of a binary 

model. The independent variable is false positive rate, and the independent variable is true 

positive rate. The area under this ROC curve, 0.54, is an average-case indication of the system’s 

classification ability. 

LLM Prompts 

CS-naive prompts 

Zero-shot prompt 

You are a helpful and unbiased language model. 
Classify the sentiment of the following sentence as "Positive", "Negative", or "Neutral." 
Do not provide any explanation or additional text in your response; output only the sentiment 
label. 
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Few-shot prompt 

You are a helpful and unbiased language model. 
 
Here are some examples of sentiment classification: 
 
Example 1: 
Sentence: I love this product! 
Sentiment: Positive 
 
Example 2: 
Sentence: I hate this service. 
Sentiment: Negative 
 
Example 3: 
Sentence: It's okay, I guess. 
Sentiment: Neutral 
 
Now, classify the sentiment of the following sentence in the same style using only one of these 
labels: Positive, Negative, or Neutral. 
Do not provide any explanation or additional text—only the label. 

Chain-of-thought prompt 

You are a helpful and unbiased language model. 
 
Please analyze the sentiment of the following sentence step by step. 
Explain your reasoning (chain-of-thought), and then clearly provide your final answer. 
 
Your chain-of-thought might look like this: 
1. Identify any words or phrases that carry emotional weight. 
2. Consider the context and overall tone. 
3. Decide which sentiment category (Positive, Negative, or Neutral) best fits. 
 
Finally, write: 
Chain-of-thought: <your step-by-step reasoning> 
Final classification: <Positive/Negative/Neutral> 

CS-aware prompts 

Zero-shot prompt 

You are a helpful and unbiased language model. 
You are capable of understanding and classifying mixed-language sentences, where different 
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languages may appear within the same sentence. 
Classify the sentiment of the following sentence as "Positive", "Negative", or "Neutral." 
 
Please ensure that you handle any code-switching appropriately by considering the context 
and emotions in all languages used. 
Do not provide any explanation or additional text in your response; output only the sentiment 
label. 

Few-shot prompt 

You are a helpful and unbiased language model. 
Here are some examples of sentiment classification for sentences with mixed languages 
(code-switching): 
 
Example 1: 
Sentence: Me encanta este producto! Es muy útil. 
Sentiment: Positive 
 
Example 2: 
Sentence: No me gusta este servicio, it's terrible. 
Sentiment: Negative 
 
Example 3: 
Sentence: Está bien, I guess. 
Sentiment: Neutral 
 
Now, classify the sentiment of the following sentence in the same style, accounting for any 
code-switching between languages, using only one of these labels: Positive, Negative, or 
Neutral. 
Do not provide any explanation or additional text—only the label. 

Chain-of-thought prompt 

You are a helpful and unbiased language model. 
 
Please analyze the sentiment of the following sentence step by step, keeping in mind that the 
sentence may contain code-switching between languages. 
Explain your reasoning (chain-of-thought), and then clearly provide your final answer. 
 
Your chain-of-thought might look like this: 
1. Identify any words or phrases in the sentence that carry emotional weight, regardless of 
language. 
2. Consider the context and overall tone, taking into account the emotions expressed in all 
languages used. 
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3. Decide which sentiment category (Positive, Negative, or Neutral) best fits the sentence, 
based on the full mixed-language context. 
 
Finally, write: 
Chain-of-thought: <your step-by-step reasoning> 
Final classification: <Positive/Negative/Neutral> 
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